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Abstract

A numerical procedure is investigated for optimizing the design of tunnel-entrance hoods used for controlling the

compression wave generated when a high-speed train enters a tunnel. Long hoods are required for long tunnels and

train speeds exceeding about 350 km/h. The hood must minimize the maximum pressure gradient across the

compression wave-front by taking advantage of the pressure-release provided by open windows distributed along one

or both of its walls. The compression wave produced by the train can be evaluated by means of a rapid computational

scheme devised and validated against experiment. Optimization is achieved by representing a possible distribution of

windows by a binary string. The individuals in an initial, random population of such strings are allowed to ‘mate’ and

evolve by ‘natural selection’ through several generations towards an optimal configuration by application of a genetic

algorithm. The genetically fittest hood is associated with the minimum possible maximum pressure gradient for

prescribed values of the train speed and hood dimensions. The algorithm yields an optimal design from among a

theoretically unlimited number of possibilities; it can also supply near-optimal, smoothly varying window distributions

(or optimize the variation in width of a long slit-like window in the hood wall) satisfying additional constraints imposed

by the designer.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The subjective characteristics of the compression wave generated when a high-speed train enters a tunnel are

governed principally by the shape of the wavefront profile (Gawthorpe, 1978; Gregoire et al., 1997; Iida et al., 1996; Ito,

2000; Maeda et al., 1993; Matsuo et al., 1997; Noguchi et al., 1996; Ozawa et al., 1976,1991; Ozawa and Maeda, 1988a;

Woods and Pope, 1976). The overall pressure rise across the wave-front varies roughly as the square of the train speed

U, and can exceed 2% or 3% of atmospheric pressure, but the wave profile depends on the shapes of both the train

nose and tunnel portal (Gregoire et al., 1997; Iida et al., 1996; Ito, 2000; Maeda et al., 1993; Matsuo et al., 1997;

Noguchi et al., 1996; Ozawa and Maeda, 1988a; Ozawa et al., 1978, 1991; Peters, 2000). An acoustic pulse (the micro-

pressure wave) is radiated from the far end of the tunnel when the compression wave arrives. The pulse strength

is proportional to the slope of the compression wave-front and varies as U3 for short tunnels; it can be large enough
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to cause annoying ‘rattles’ in building structures close to the tunnel exit. The problem is often exacerbated by the use

of acoustically smooth, concrete slab tracks in long tunnels, because reduced damping promotes nonlinear steepening of

the front.

The influence of wave-front steepening can be greatly reduced by installing a tunnel entrance ‘hood’ (Ozawa

and Maeda, 1988a,b; Ozawa et al., 1978, 1991). This is a thin-walled extension of the tunnel, usually of larger cross-

sectional area, and with open ‘windows’ distributed along its length. High pressure air is forced through the windows

by the train, producing modifications in both the initial ‘rise time’ and profile of the compression wave. Very large

increases in the effective thickness of the wave-front can be achieved by proper choice of the spacing and sizing

of the windows. An optimal wave-front profile should be long enough to vitiate the effects of wave steepening in a long

tunnel; the ideal profile exhibits linear growth over a wavefront thickness �(hood length)=M determined by the time of

passage of the train nose through the hood, where M ¼ U=c0 is the train Mach number ðc0 being the mean sound speed

in air).

Hood design is usually based on model scale testing using experimental apparatus of the kind illustrated

schematically in Fig. 1 (typically � 1
127

full scale), and on numerical modelling (Ozawa and Maeda, 1988a,b; Ozawa et

al., 1978, 1991; Maeda et al., 1993; Howe, 2005; Howe and Iida, 2003; Howe et al., 2000, 2003a,b, 2006). A common

configuration involves a circular cylindrical tunnel fitted with a cylindrical, coaxial hood, into which an axisymmetric

model train is projected along a tightly stretched wire guide at speeds up to 500 km/h. The initial form of the

compression wave is measured using flush-mounted pressure sensors in the tunnel walls at a distance of 1–2m from the

junction with the hood. The Reynolds number is sufficiently large that dynamic similarity with full scale is achieved

during the initial stages of wave formation for a given value of M. However, flow separation to the rear of the train nose

causes a progressive, Reynolds number dependent, pressure increase to the rear of the wave front; this can be attributed

to a distributed dipole source whose strength per unit length of train is equal to the frictional drag on the train and

tunnel.

A very efficient numerical scheme is described by Howe et al. (2006) for predicting the initial compression wave (prior

to the onset of nonlinear steepening) for axisymmetric model scale experiments in terms of a prescribed tunnel-hood

geometry and window distribution. The procedure includes the influences on wave formation of (i) the hood-tunnel

junction and the consequent temporary ‘trapping’ of wave energy in the hood by multiple reflections, (ii) the formation

of air jets exhausting from the hood windows, and (iii) the frictional drag on the train and tunnel walls. It has been

validated by comparison with a series of experiments conducted over a period of years (Howe, 2005; Howe and Iida,

2003; Howe et al., 2000, 2003a,b, 2006; Winslow et al., 2005) at speeds U up to 425 km/h.

There is an obvious practical need, however, for an ‘inverse’ algorithm that determines the optimal hood dimensions

and distribution and sizing of the hood windows in terms of prescribed values of the train speed U and the train nose

characteristics. The need is particularly urgent at the higher operating speeds of proposed newer trains ðU�500 km/h

for Maglev designs), which are expected to spend at least 50% of a typical journey within a succession of long tunnels. It

is conjectured that hoods as long as 200m with many windows will then be necessary to counter nonlinear wave-front

steepening. In these circumstances it should be possible to greatly reduce the number of lengthy hood validation tests by

selecting candidate designs on the basis of preliminary numerical studies.

The numerical method of Howe et al. (2006) can be run in a few seconds on a modern desk-top computer. It is readily

incorporated into an inverse algorithm that seeks and evaluates candidate hood designs. The procedure can be

automated in the form of a genetic algorithm (Goldberg, 1988; Michalawicz, 1992; Coley, 1999; Vose, 1999) that

determines the optimum by ‘natural selection’ (Fisher, 1958), and in this paper the feasibility of this approach is

assessed by application to model scale axisymmetric configurations at U ¼ 360km/h, which will be typical of higher

speed trains in the near future. The actual procedure to be used is a ‘simple genetic algorithm’ (Coley, 1999) extended in

the manner described by Carroll (1996).
Fig. 1. Schematic experimental configuration involving a model scale train entering an axisymmetric cylindrical tunnel and entrance

hood with windows.
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Formulae relating to the prediction method of Howe et al. (2006) are briefly discussed in Section 2 and collected

together for reference in Appendix A. The genetic algorithm is described in Section 3. Application is made to two

different axisymmetric tunnel-hood configurations in Sections 4 and 5.
2. Calculation of the compression wave

2.1. Pressure source mechanisms

The compression-wave prediction scheme of Howe et al. (2006) is applicable to configurations of the type illustrated

in its simplest form in Fig. 2, in terms of which the following brief resumé of the principal mechanisms contributing to

wave formation can be given.

The train nose can be regarded as a combination of a monopole source, of strength equal to the rate at which air is

displaced by the advancing train, and a ‘drag’ dipole equal in magnitude to the net pressure force on the nose produced

by the pressure rise in front of the train. Both sources are localized to the nose region where the cross-sectional areaAT,

say, of the train is varying.

The initial pressure rise pE in front of the train occurs as the monopole and dipole sources first interact with the hood

portal, as the nose crosses the hood entrance plane E (Fig. 2). This disturbance propagates as a plane wave ahead of the

train and subsequently interacts with windows W and with the junction J of the hood and tunnel before the arrival of

the train (Howe et al., 2000, 2003a,b). At J the wave is partially transmitted into the tunnel and partially reflected back

into the hood. The subsequent interaction of reflected waves with the train can be ignored provided the ‘blockage’

A0=Ah is less than about 0.2, where A0 is the uniform cross-sectional area of the train to the rear of the nose, and Ah

is the cross-section of the hood; this is the usual situation at full scale. However, almost perfect total reflection occurs at

the hood portal E, with reflection coefficient �� 1, and the wave is then multiply reflected from the ends of the hood.

Each reflection from the junction J is accompanied by the transmission of a fraction of the wave energy into the tunnel,

such that, after four or five back-and-forth reflections of pE within the hood, most of the initial wave energy has been

transmitted into the tunnel.

A second pressure wave pJ, say, is generated when the train nose reaches the junction J. This propagates into

the tunnel as a compression wave and towards E as an expansion wave. The latter component is multiply reflected

within the hood before being wholly transmitted into the tunnel, where it contributes to the tail end of the compression

wave-front.

These interactions become more complicated in the presence of windows. In the case of a single window (W in Fig. 2),

the arrival of pE forces air out of the window, forming a high speed jet whose velocity can increase to as much 50% of

the train speed U. The window behaves as a negative acoustic source (controlled by the inertia of the jet) producing an

expansion wave pW that initially propagates from the window with equal amplitudes in both directions in the hood. In

particular, it causes an effective reduction in the amplitude of the compression wave pE transmitted past the window.

The subsequent incidence on the window of waves multiply-reflected from the ends of the hood produce variations in
Fig. 2. The principal flow sources and interactions contributing to compression wave generation.
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the window source strength, which tends to remain significant until the train nose passes the window (Howe, 2005;

Howe et al., 2003b). Similar remarks are applicable to a hood with several windows: each window behaves as a

monopole source of waves, and the volume velocities (‘source strengths’) of the different windows are coupled by the

pressure waves reflecting back-and-forth within the hood.

In addition to these waves turbulence between the tunnel walls and the train (to the rear of the point S in Fig. 2)

generates a pressure component pD that accounts for a gradual pressure rise to the rear of the main compression wave

front (Howe and Iida, 2003). The turbulence forms a dipole, surface source whose overall strength is equal to the drag

on the train and wall, and it therefore increases approximately linearly with time, being proportional to the length of

train within the tunnel and hood. A much smaller pressure pulse attributable to the large vortex formed just outside

the hood portal (Fig. 2) (Auvity and Bellenoue, 1998; Auvity et al., 2001; Fukuda et al., 2003) can usually be ignored

(Howe and Iida, 2003).
2.2. The model scale configuration

The superposed pressures pE; pJ; pW; pD, appropriately modified by reflections from the ends of the hood, dominate

the shape of the compression wave front. They will be calculated for the axisymmetric arrangement shown in Fig. 3,

involving a model scale tunnel in the form of a circular cylindrical duct of internal radius R fitted axisymmetrically with

a thin-walled, circular cylindrical hood of internal radius Rh, length ‘h and wall thickness ‘w, with an unflanged opening.

The origin of coordinates ðx; y; zÞ is taken at the centre O of the hood entrance plane, with the negative x-axis coinciding

with the common axis of symmetry of the tunnel and hood.

There are N windows distributed in a single row along one side of the hood, such that the kth window has area Ak

and its centroid is at ðxk; 0;RÞ;�‘hoxko0; the figure illustrates this for N ¼ 3. In general Ak5Ah ¼ pR2
h � cross-

sectional area of the hood. In a first approximation predictions are independent of the window shape: the influence of a

rectangular window of axial and azimuthal lengths, respectively, equal to ‘x and ‘y is well represented by that of a

circular window of equal area provided ‘x and ‘y are of comparable magnitudes (Howe et al., 2003b; Howe, 2005).

Long, slit-like windows can be approximated by a linear array of small circular windows.
Fig. 3. Coefficients defining the hood, tunnel and axisymmetric train: (a) ‘side’ view from the direction of the positive z-axis; (b) ‘top’

view from the direction of the positive y-axis.
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The model train is projected into the hood along a stretched wire passing smoothly through a cylindrical channel

bored along the train axis. The train speed is uniform and equal to U, and the time origin is adjusted to ensure that the

nose first cuts the hood entrance plane x ¼ 0 at time t ¼ 0. The ‘top’ view in Fig. 3(b) shows the wire displaced a

distance zt40 from the tunnel axis towards the windows (in the z-direction). The two cases zt_0 therefore correspond,

respectively, to a train travelling along a track that is ‘near’ or ‘far’ from the windows.

The circular cross-section of the train has constant radius h and areaA0 ¼ ph2 except within a distance L of the front

of the train, where the area ATðsÞ varies with distance s from the nose tip. In this paper the nose is assumed to be

ellipsoidal with radius

r ¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
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2�
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L
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; 0osoL. (2.1)
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For numerical purposes this formula can be assumed to apply over 0osoþ1, because the expansion wave produced

when the ‘tail’ of the train enters the hood is of no concern in the present discussion. We shall also take the following

values for the nose ‘aspect ratio’ and the tunnel blockage:

L

h
¼ 3;

A0

A
¼ 0:2, (2.3)

where A ¼ pR2 is the cross-sectional area of the tunnel.

2.3. Compression wave formulae

The disturbance in front of the train, in the uniform tunnel in xo� ‘h, rapidly assumes the form of a plane acoustic

wave of pressure pðtþ x=c0Þ propagating towards x ¼ �1, where

p tþ
x

c0

� �
¼ pEðx; tÞ þ pJðx; tÞ þ pDðx; tÞ þ pWðx; tÞ ðxo� ‘hÞ. (2.4)

Detailed formulae for each term on the right-hand side are given and discussed in Howe et al. (2006). Those required

by the genetic algorithm to be described in Section 3 are summarized in Appendix A, and may be consulted when

necessary.
3. The optimization problem

3.1. Pressure gradient attenuation by an unvented hood

The effectiveness of a hood is assumed to be determined by the reduction achieved in the maximum value ðqp=qtÞmax

of the compression wave ‘pressure gradient’ qp=qt relative to that in the absence of the hood. Consider first a circular

cylindrical tunnel of radius R with no hood (Fig. 3(a) with Rh ¼ R and no windows). Let the train be defined as in

Section 2.2; only the components pE and pD of (2.4) are nonzero. Fig. 4(a) shows typical profiles of the compression

wave pressure p and pressure gradient qp=qt predicted by the formulae given in Appendix A at position x ðo0Þ ahead of

the train within the tunnel, plotted as functions of the nondimensional retarded time U ½t�=R � Uðtþ x=c0Þ=R. These

predictions take no account of nonlinear steepening and therefore represent the initial waveform, shortly after

generation by the entering train.

The calculations have been performed for the train defined in Section 2.2 when U ¼ 360km/h and when the track

offset zt ¼ 0:4R. Here and henceforth the following mean physical parameter values are assumed:

c0 ¼ 340m/s

r0 ¼ 1:23kg/m3
ðmean density of airÞ

m ¼ 0:053 ðfriction factorÞ

9>=
>;. (3.1)
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Fig. 4. Calculated time dependances of the compression wave pressure p and pressure gradient qp=qt for the model train defined by

(2.1)–(2.3) subject to conditions (3.1) when: (a) there is no hood; (b) the hood length ‘h ¼ 10R and Rh=R ¼ 1:25.

M.S. Howe / Journal of Fluids and Structures 23 (2007) 1231–12501236
The train nose pierces the entrance plane x ¼ 0 of the tunnel at t ¼ 0. The initial rapid pressure rise of about 3.2 kPa

across the wave-front (determined by the component pE of (2.4)) occurs over a time �2R=U ; the slow, linear increase in

pressure behind the wave-front is produced by the frictional pressure component pD. The maximum value of the

pressure gradient �3:95MPa/s is attained at U ½t�=R ¼ 0:39.
The corresponding plots in Fig. 4(b) show how these predictions are altered when the tunnel is fitted with an unvented

hood of length ‘h ¼ 10R and radius Rh ¼ 1:25R. The same overall pressure rise is now achieved in distinct stages.

The initial rise at the wave-front (A in the figure) is reduced to about 2.5 kPa (a fraction �TJA=Ah ¼ 2A=ðAh þ

AÞ ¼ 0:78 of its value in the absence of the hood; see Appendix A). Wave energy is temporarily trapped in the hood

by reflections from its ends; the step-like pressure rises seen in the figure can be attributed to the effects of

these reflections and also to secondary waves generated by the train nose as it passes the junction (Howe et al., 2003a).

The complicated behaviour at B, for example, arises as follows: the initial small pressure dip is caused by a

negative contribution attributable to the initial pressure rise at A after reflection at the junction and again at the

hood entrance after a total time delay �2ð‘h þ ‘EÞ=c0 (therefore received at x at U ½t�=R�2Mð‘h þ ‘EÞ=R ¼ 6:2)
where ‘E ¼ 0:763R is the ‘end correction’ of the hood (see Eq. (A.1) of Appendix A); the subsequent pressure rise

at B is produced by a pressure pulse generated by the train nose as it passes the junction at time �‘h=U after entering

the hood. This is received at x ðo� ‘hÞ within the tunnel after a delay �� ð‘h þ xÞ=c0, i.e. at U ½t�=R�

ð1�MÞ‘h=R ¼ 7:06. However, the maximum pressure gradient still occurs at the wave-front, but is reduced to

2:53MPa/s at U ½t�=R ¼ 0:45.
It should now be evident that, for a given value of the train Mach number M, increasing the length of the

hood beyond a certain critical value can never lead to further reductions in ðqp=qtÞmax. In the present case M ¼ 0:29
and ðqp=qtÞmax always exceeds about 2:53MPa/s. Indeed, the wave-front is generated at the hood entrance exactly

as if the train is entering a uniform tunnel of infinite length, and the first step increase always has the structure

described in the previous paragraph (a dip followed by a rise produced by the passage of the nose past the junction)
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Fig. 5. (a) Calculated time dependances of the compression wave pressure p and pressure gradient qp=qt for the model train defined by

(2.1)–(2.3) subject to conditions (3.1) for a hood of length ‘h ¼ 15R and for Rh=R ¼ 1:25. (b) Variation of the attenuation a of (3.2)

with hood length when U ¼ 360km/h and Rh=R ¼ 1:25.

M.S. Howe / Journal of Fluids and Structures 23 (2007) 1231–1250 1237
because, when ‘E5‘h,

2Mð‘h þ ‘EÞ

ð1�MÞ‘h

�
2M

ð1�MÞ
¼ a constant independent of ‘h.

Fig. 5(a) illustrates this conclusion when the hood length is increased to ‘h ¼ 15R.

The attenuation a produced by a hood is defined by

a ¼
maximum pressure gradient

maximum pressure gradient when the hood is absent
. (3.2)

Fig. 5(b) shows the calculated dependence of a on hood length ‘h=R for U ¼ 360 km/h ðM ¼ 0:29Þ and Rh=R ¼ 1:25.
For a hood of zero length ð‘h ¼ 0Þ the portal consists of a circular cylindrical exit of radius R fitted with a ‘flange’ of

radius 1:25R, in which case a � 0:98. As ‘h increases from zero the maximal attenuation is attained rapidly for a

relatively short hood with ‘h=R � 2. There is little or no practical benefit in using an unvented hood of greater length.

Further increases in the attenuation can be achieved by increasing the hood radius or by the introduction of windows.

The optimization procedure to be discussed aims to obtain maximal hood attenuation by proper choice of the

distribution and sizing of windows.
3.2. The genetic algorithm

In the model scale experiment the basic hood geometry is defined by prescribed values of ‘h=R and Ah=A; in

addition, there are N windows with centroids at axial locations xk evenly spaced along the wall of the hood. The train
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speed U, blockage A0=A, nose aspect ratio L=h and track offset zt are also prescribed. The genetic algorithm will be

used to determine the distribution of window cross-sectional areas Ak that minimizes the maximum value of the

compression wave pressure gradient qp=qt radiated into the tunnel. This distribution will define the ‘optimal hood’.

The algorithm starts by selecting a random population (the first ‘generation’) of Npop possible hood–window

distributions. Each distribution is represented by a binary string obtained by concatenating N substrings of equal length

Nsub; the kth substring is a binary number that decodes to the fractional area Ak=A of the kth window. The precision

with which window areas are determined is increased by increasing the substring length Nsub. The ‘fitness’ of a

distribution is defined by the minimum value of the predicted maximum pressure gradient ðqp=qtÞmax, i.e.

fitness ¼ maximum value of �
qp

qt

� �
max

� �
. (3.3)

The fitness of each member of the population is calculated using the prediction formulae in Appendix A. The optimal

window distribution is determined iteratively by allowing successive generations of hood-window populations to evolve

by a process of ‘natural selection’ that aims to maximize population fitness (Fisher, 1958). Procedures for doing this

differ in many small details (Goldberg, 1988; Michalawicz, 1992; Carroll, 1996; Coley, 1999; Vose, 1999); in this paper

Npop is required to be even, and each new generation is determined from the previous one by application of the

following rules:
(i)
 Reproduction: 1
2
Npop pairs of members of the current generation are selected as ‘parents’ for mating. The selection

probability of each member is the ratio

member fitness

total population fitness
.

(ii)
 Mating: ‘Single point cross-over’ is applied with probability Pcross ¼ 0:6 to each pair selected for mating to produce

two offspring. To do this a ‘cut’ is made at random at the same place in the two binary strings of the parents; the

offspring are then obtained by interchanging between the strings the binary digits on, say, the left side of each cut.

In cases where cross-over is not applied (which occurs with probability 1� Pcross) the two parents go forward

(as ‘offspring’) without change.
(iii)
 Mutation: Each bit in the binary string representation of all offspring is reversed ð1! 0 or 0! 1) with probability

Pmut ¼ 1=ðbinary string lengthÞ.
(iv)
 Creep is applied to each of the N substrings of an offspring: 1 is added or subtracted at random from the least

significant bit of the substring with probability

Pcreep ¼
binary string length

N �Npop
¼

Nsub

Npop
.

(v)
 Elitism: If the fitness of the fittest (the ‘elite’) member of the previous generation exceeds the fitness of each

offspring then one offspring chosen at random is replaced by the elite member.
(vi)
 New generation: The surviving population of offspring define the new generation.
Rules (i)–(vi) are applied repeatedly until a suitable termination condition is satisfied. In practice this means until the

elite member ceases to change. For hoods with many windows (20 or more) there is a multitude of different window

distributions that correspond to local minima in the maximum pressure gradient; it is then necessary to run the

algorithm several times with different population sizes and substring lengths. In this way an excellent estimate can be

obtained of the optimum window distribution, or at least of the minimum achievable pressure gradient.
4. Hood optimization when Rh=R ¼ 1

4.1. Unconstrained windows

The simplest optimization problem occurs for the limiting case Rh ¼ R. The numerical scheme of Appendix A yields

the most accurate predictions when the fractional window areas Ak=A are small, less than about 0.2, say. We shall

examine predictions of the genetic algorithm when 0o‘h=Ro20.
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It soon becomes evident (for each fixed value of ‘h=R) that there generally exist many different window distributions

with a minimum value of ðqp=qtÞmax close to the global minimum. This accords with the experimental observation that

many different window arrangements can lead to similar modifications of the initial compression wave profile

(Iida, 2005).

The calculations are performed by taking the windows to be evenly spaced along one of the hood walls (of thickness

‘w ¼ 0:06R), according to the formula

�xk ¼
‘h

N
k �

1

2

� �
; 1pkpN. (4.1)

Figs. 6 and 7 illustrate typical optimal waveforms for ‘far’ windows for the two cases summarized in Table 1.

The attenuation a in the final column is calculated from the formula

a ¼
ðqp=qtÞmax

3:95
, (4.2)

where ðqp=qtÞmax is the maximum pressure gradient of the fittest member of the final population, and the denominator is

the value ðqp=qtÞmax � 3:95mPa/s found in Section 3.1 in the absence of windows.

These results are typical of those obtained when the genetic algorithm is terminated after �500 generations. The

compression wave profiles in both cases exhibit smooth, linear pressure variations across the wave-front except for a

small, localized inflexion at the foot of the wavefront, generated just as the nose enters the hood. Further calculation

shows that this inflexion (and the corresponding fluctuation in the pressure gradient) is absent for ‘h=R smaller than

about 4. The pressure gradients are uniformly small over the whole interval of the wave-front. In both cases the region
Fig. 6. (a) —: calculated optimal time dependances of the compression wave pressure p and pressure gradient qp=qt for the model train

defined by (2.1)–(2.3) for U ¼ 360km/h, ‘h ¼ 10R, Rh=R ¼ 1 and 14 ‘far’ windows ðzt ¼ �0:4RÞ; the broken-line curves ð� � �Þ

are for the parabolic window distribution discussed in Section 4.2. (b) � � �: The corresponding window distribution ð&&&, see

Section 4.2).



ARTICLE IN PRESS

Fig. 7. (a) Calculated optimal time dependances of the compression wave pressure p and pressure gradient qp=qt for the model train

defined by (2.1)–(2.3) for U ¼ 360km/h, ‘h ¼ 20R, Rh=R ¼ 1 and 20 ‘far’ windows ðzt ¼ �0:4RÞ. (b) The corresponding window

distribution.

Table 1

Minima of ðqp=qtÞmax predicted by the genetic algorithm

‘h=R N zt=R ðqp=qtÞmax ðmPa/sÞ at U ½t�=R a

10 14 �0.4 1.030 0.21 0.26

20 20 �0.4 0.686 10.50 0.17

M.S. Howe / Journal of Fluids and Structures 23 (2007) 1231–12501240
of uniform wave growth occurs over a ‘retarded interval’ of the hood of length jdxj that is smaller than the nominal

hood length ‘h occupied by the windows ðjdxj=R�8; 16, respectively, in Figs. 6 and 7). Also both figures indicate that

relatively large windows are required at the inner end of the hood to provide a smooth transition from this rapid growth

to the slow, drag dominated amplitude growth to the rear of the main wave-front.

The fluctuating nature of the window area distributions in Figs. 6(b) and 7(b) is consistent with our remark above

concerning the large number of configurations with near optimal characteristics. It is interesting to note, however, that

in both cases there are relatively large windows at the open end of the hood (i.e. at the portal). The efficiency with which

a window near the portal affects the radiation into the tunnel is very small. Indeed, each window is acoustically

equivalent to a monopole source that is necessarily accompanied by an equal and opposite ‘image’ source in the wall of

the outside (‘virtual’) extension of the hood in order to satisfy the open end ‘pressure release’ condition (at x ¼ ‘E). A
window very close to the entrance is therefore equivalent to a relatively weak ‘compact’ acoustic dipole, and must be

large to make a finite contribution to the radiation in the tunnel.

The genetic algorithm must be applied several times for each value of ‘h=R and for a range of values of N. This

permits a good approximation to be identified for the global minimum of ðqp=qtÞmax, and the corresponding optimal

values of the attenuation a can then be calculated from (4.2). The results of such a survey for the present case of ‘far’
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Fig. 8. Dependence on ‘h=R of the optimal value of the attenuation a for unconstrained far windows ðzt ¼ �0:4RÞ when

U ¼ 360km/h, Rh=R ¼ 1.
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windows ðzt ¼ �0:4Þ are presented in Fig. 8, which shows a sequence of calculated values of a (the solid circles �)

interpolated by a smooth curve. The rapid decrease in a over the interval 0o‘ho2 is reminiscent of the same behaviour

in Fig. 5(b) for an unvented hood. The behaviour for longer hoods is very different, however, because the judiciously

placed and sized windows continue to produce a slow but relentless reduction in a as the hood length ‘h increases, and

compression wave profiles that are smooth and exhibit essentially linear growth across the wave-front.

4.2. Parabolically constrained windows

The smooth and continuous nature of the calculated data points in Fig. 8 gives some confidence in the convergence of

the genetic algorithm to the global minimum of a. But the irregular variation of window sizes evident in Figs. 6 and 7

indicates that a very much larger number of numerical iterations is necessary to identify corresponding smoothly

varying window distributions from among the irregular patterns that furnish very similar values of a. However, if the

ultimate goal is the fabrication of an optimal hood, a more uniform distribution of window sizes is desirable, especially

if it is required to construct a continuous window in the form of a long slit of slowly varying width.

Smoothly varying, near-optimal window distributions can be found by prescribing the window area distribution Ak as

an appropriate function of xk. Inspection of Figs. 6 and 7, for example, suggests that, when Rh ¼ R, a convenient and

simple distribution might be furnished by the parabola

Ak

A
¼ a

xk

R
þ b

� �2
þ c; a; c40. (4.3)

This distribution is positive definite and takes its minimum value at xk=R ¼ �b. It can therefore be regarded (for b40)

as providing a crude approximation to the irregular ‘U-shaped’ distributions of Figs. 6 and 7.

Optimization now reduces to the determination of the optimal values of the three coefficients a; b; c for any prescribed
number of windows N and hood length ‘h=R. The genetic algorithm is modified in an obvious manner, by taking each

window distribution to be defined by a string with three substrings, each respectively representing the values of a; b; c.
Thus, the task for the genetic algorithm is very much reduced because, although optimization must still be performed

over an infinity of possible window distributions, they form an infinite subset of dimension 3 of the entire1N space of

possible distributions. The results of such a calculation will be useful provided the subset includes members whose

attenuation a closely approximates the corresponding optimum for unconstrained windows.

That this is indeed the case is seen by reference Fig. 9 and Table 2. The latter lists predicted values of a (and

corresponding values of a; b; c) for parabolically constrained windows when Rh=R ¼ 1; zt=R ¼ �0:4 and U ¼ 360km/h.

The figure shows that these values of a ð� � �) are close to or coincide with the a-curve (—) for the unconstrained

windows discussed in Section 4.1. Similarly, reference back to Fig. 6 indicates how predictions for constrained and

unconstrained windows differ in detail. The broken line curves in Fig. 6(a) represent the pressure and pressure gradient

profiles for 14 windows distributed parabolically when ‘h=R ¼ 10; the actual window distribution is shown in Fig. 6(b)

ð&&&Þ. For practical purposes the predictions are identical. However, it should be noted that 14 windows distributed

parabolically yield a minimum value of ðqp=qtÞmax�1:09mPa/s, for which a � 0:276, marginally larger than the absolute
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Table 2

Parabolically constrained far windows ðzt=R ¼ �0:4, Rh=R ¼ 1)

‘h=R N a a b c

2 10 0.576 0.09961 0.71373 0.01224

6 18 0.365 0.00941 3.48235 0.00519

10 20 0.271 0.00158 5.60784 0.01458

14 20 0.212 0.00088 8.01569 0.01693

18 18 0.177 0.00065 10.65882 0.02162

Fig. 9. Comparison of predicted optimal values of a for parabolically constrained windows ð� � �, Table 2) and the predictions of

Fig. 8 (—) for unconstrained windows for zt=R ¼ �0:4, Rh=R ¼ 1, U ¼ 360km/h.
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minimum given in Table 2 for N ¼ 20 windows, but this is nonetheless very close to the 1.03mPa/s obtained for

unconstrained windows (Table 1).
5. Hood optimization for Rh=R ¼ 1:25

5.1. Unconstrained near windows

Turn attention now to the optimization problem for the more general hood depicted in Fig. 2, for Rh=R ¼ 1:25. The
solid, ‘unconstrained windows’ curve in Fig. 10 shows the variation with ‘h=R of the optimized hood attenuation a for

near windows ðzt=R ¼ 0:4Þ when U ¼ 360km/h; also shown is the a-variation for Rh=R ¼ 1:25 in the absence of

windows (Section 3).

The calculated pressure and pressure gradient profiles are illustrated in Fig. 11(a) (—) for ‘h=R ¼ 10 when the hood is

optimized using N ¼ 12 near windows. As in the case Rh=R ¼ 1 discussed in Section 3, there are many irregular window

distributions that give near optimal behaviour for a prescribed value of N. However, they all exhibit the characteristic

structure displayed for the present realisation in Fig. 11(b) ð� � �Þ, namely that the innermost windows are very small. In

the present case, of the three innermost windows ðk ¼ 10; 11; 12Þ the window area A10 is small, and A11�A12 � 0.

Configurations of this kind, where windows adjacent to the hood-tunnel junction are effectively shut, are typical of all

optimized distributions when ‘h=R exceeds about 3 or 4.
5.2. Chopped-parabolic near windows

These conclusions suggest that smoothly varying, near optimal window distributions might be obtained (for

Rh=R41) by optimizing the following chopped-parabolic generalisation of the parabolic distribution (4.3):
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Fig. 10. Dependence on ‘h=R of the attenuation a for unconstrained (—) and chopped-parabolically constrained ð� ��Þ near

windows ðzt ¼ 0:4RÞ when U ¼ 360km/h, Rh=R ¼ 1:25.

Fig. 11. (a) —-: calculated optimal time dependances of the compression wave pressure p and pressure gradient qp=qt for the model

train defined by (2.1)–(2.3) for U ¼ 360km/h, ‘h ¼ 10R, Rh=R ¼ 1:25 and 12 near windows ðzt ¼ 0:4RÞ; the broken-line curves ð� � �)

are for the chopped-parabolic window distribution. (b) The corresponding unconstrained ð� � �) and chopped-parabolically

constrained ð&&&Þ window distributions.
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Ak

A
¼

aðxk=Rþ bÞ2 þ c; 0o� xk=Rod ;

0; do� xk=Ro‘h=R;

(
a; c; d40. (5.1)
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Table 3

Chopped-parabolically constrained near windows (zt=R ¼ 0:4, Rh=R ¼ 1:25)

‘h=R N a a b c d

2 4 0.518 0.09926 0.73637 0.00050 1.89827

4 4 0.392 0.02466 3.97656 0.02710 2.61490

6 6 0.316 0.00677 4.69890 0.06569 4.64147

8 10 0.264 0.00625 3.89744 0.05146 6.78720

10 10 0.236 0.00399 4.62271 0.05916 8.20855

12 12 0.214 0.00242 6.08445 0.05731 10.15385

14 12 0.201 0.00168 6.83419 0.06130 11.24992

16 14 0.191 0.00090 8.02149 0.06042 13.32747

18 16 0.184 0.00026 0.79560 0.03173 16.11341

20 18 0.183 0.00020 1.96078 0.03727 17.89804

Fig. 12. Dependence on ‘h=R of the attenuation a for unconstrained (—) and chopped-parabolically constrained ð� � �Þ far windows

ðzt ¼ �0:4RÞ when U ¼ 360km/h, Rh=R ¼ 1:25.

Table 4

Chopped-parabolically constrained far windows ðzt=R ¼ �0:4, Rh=R ¼ 1:25)

‘h=R N a a b c d

2 8 0.507 0.07339 0.43137 0.00050 1.77098

4 12 0.368 0.00633 3.24706 0.11942 2.42510

6 10 0.316 0.00537 �0.64029 0.09677 3.70432

8 16 0.280 0.00360 3.83101 0.03792 5.98701

10 14 0.252 0.00375 4.06105 0.05336 7.29035

12 18 0.227 0.00278 5.31765 0.04040 8.59294

14 10 0.219 0.00204 6.44444 0.11133 9.82222

16 8 0.208 0.00027 14.98413 0.16833 12.64762

18 8 0.207 0.00037 �5.01177 0.10142 13.96235

20 6 0.206 0.00100 �2.85714 0.09550 14.53968
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Thus, all windows constrained in this way are shut when �xk=R4d, and the genetic algorithm is required to minimize

ðqp=qtÞmax with respect to the four parameters a; b; c; d.
Table 3 displays the optimal parameter values and the corresponding hood attenuation a for chopped-parabolic near

windows (zt=R ¼ 0:4, Rh=R ¼ 1:25, U ¼ 360km/h). The attenuation a, plotted as the broken line curve in Fig. 10, is

seen to provide a close approximation to the predicted overall optimal behaviour for unconstrained windows. The

pressure and pressure gradient profiles for ‘h=R ¼ 10;N ¼ 12 are also plotted as broken line curves in Fig. 11(a); these

plots are negligibly different from the corresponding prediction for unconstrained near windows. Fig. 11(b) compares
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the corresponding smoothly varying, chopped-parabolic window distribution ð&&&Þ with that ð� � �Þ for 12

unconstrained windows. The chopped-parabolic windows k ¼ 11; 12 are shut.

5.3. Far windows

Similar predictions for the optimal attenuation a are obtained when Rh=R ¼ 1:25 for ‘far’ windows ðzt=R ¼ �0:4Þ.
The solid-line curve (—) in Fig. 12 illustrates this for unconstrained windows. Once again it is found that optimal

window areas Ak close to the junction of the hood and tunnel are very small or negligible, so that smoothly varying,

near optimal window distributions can be realised by optimizing the chopped-parabola formula (5.1). The results of

such an investigation are given in Table 4 and plotted as the broken-line curve in Fig. 12.
6. Conclusion

The subjective impact of the compression wave generated when a train enters a tunnel is governed by the magnitude

of the peak pressure gradient ðqp=qtÞmax. Tunnel entrance hoods are used to elongate the front of the compression wave

and thereby diminish the value of ðqp=qtÞmax. The simplest type of hood consists of a uniform tunnel extension whose

cross-section Ah exceeds the tunnel cross-section A; wave trapping by multiple reflections from the ends of the hood

then cause the compression wave-front to rise in stages with reduced maximum pressure gradient equal to a fraction

a ðo1Þ of the pressure gradient in the absence of the hood. The value of a decreases rapidly as the hood length ‘h

increases from zero, but for a given value of the area ratio Ah=A it attains a minimum and remains approximately

constant with further increases in ‘h. Thus, in the case of the circular cylindrical model scale hoods and tunnels studied

in this paper the minimum value a � 0:6 is reached at ‘h�2R when Ah=A ¼ 1:5625 ðRh=R ¼ 1:25Þ.
The simplest and most effective way to achieve further reductions in a is to line one or both of the hood walls with a

sequence of ‘open windows’. Current practice for train speeds up to about 300 km/h is to use relatively short hoods with

windows, namely hoods that correspond at model scale to ‘h less than about 4R. In such cases it is feasible to determine

the window distribution and sizing by experiment. At higher speeds, however, longer hoods are needed and design by

experiment becomes a much lengthier and more tedious process. The numerical optimization scheme of this paper

should then prove useful. The method yields near-optimal, smoothly varying parabolic or chopped-parabolic window

distributions for long hoods (‘h as large as 20R), respectively, for Ah=A ¼ 1 and Ah=A41, and for which the

optimum value of a is reduced to about 0.2–0.25. The procedure can be used to design hoods with discrete windows or,

by performing the numerical optimization using a large number of relatively small windows, it can determine the

optimal variation of the width of a window in the form of a long slit cut in the side of the hood.

To appreciate further the power of the method it might be noted that running the genetic algorithm through 500

generations with a population size Npop ¼ 16 involves 8000 separate fitness calculations, equivalent to 8000

experimental test runs. Moreover, if there are 10 unconstrained windows and the area of each is represented by an 8 bit

binary string, the optimized window distribution is extracted by the genetic algorithm from amongst a total of �1:2�
1024 different possibilities.

Our results also indicate that the overall optimal compression waveform in a long hood is attained when Ah ¼A,

when there are no reflections from the change in cross-sectional area at the junction of the hood and tunnel. The

compression wave exhibits growth that is essentially smooth and linear across the whole of the wavefront except for a

small localized inflexion generated just as the train nose enters the hood. For this case the maximum pressure gradient is

also smaller than for Ah=A ¼ 1:5625 provided ‘h=R exceeds about 12.
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Appendix A. Formulae for the compression wave

The various components of the pressure in (2.4) depend in the first instance on geometrical properties of the hood and

the junction which, when the presence of the windows is temporarily ignored, are determined by two particular

solutions j	EðxÞ;j
	
J ðxÞ of Laplace’s equation. The function j	EðxÞ represents the velocity potential of a hypothetical,
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uniform incompressible flow out of the hood portal normalized such that

j	EðxÞ � x� ‘E for jxjbRh inside the hood;

� �Ah=4pjxj for jxjbRh in free space outside the hood;

)
(A.1)

where ‘E � 0:61Rh is the Rayleigh end-correction (Rayleigh, 1926; Howe, 1998).

The harmonic function j	J ðxÞ represents a steady potential flow through the junction from the tunnel to the hood.

When the hood length ‘h42Rh its behaviour in the neighbourhood of J is well approximated by the solution of

Laplace’s equation obtained by assuming the hood to extend to x ¼ þ1, and is normalized such that

j	J ðxÞ � xþ ‘h � ‘J for xþ ‘h !�1 in the tunnel;

�
A

Ah

ðxþ ‘hÞ for xþ ‘h !þ1 in the hood:

9>=
>; (A.2)

The length ‘J is the effective ‘hydrodynamic length’ of the junction; it is usually negligible (Howe et al., 2003a).

The following reflection and transmission coefficients RJ, TJ, respectively, determine the amplitude of a wave

reflected back into the hood at the junction J, and transmitted across the junction into the tunnel (into xo� ‘h):

RJ ¼
Ah �A

Ah þA
; TJ ¼

2Ah

Ah þA
. (A.3)

Primitive hood-entrance and junction-generated waves PE;PJT;PJH are defined as follows:

PE tþ
x

c0

� �
�

r0U2

Ahð1�M2Þ
1þ

A0

A

� �Z 1
�1

qj	E
qx0
ðx0; 0; ztÞ

qAT

qx0
x0 þU tþ

x� ‘E
c0

� �� �
dx0, (A.4)

where M ¼ U=c0 is the train Mach number,

PJT tþ
x

c0

� �
¼

r0U2

ð1�M2Þ

A0

A
1þ

A0

A

� �
TJ

2

�

Z 1
�1

qj	J
qx0
ðx0; 0; ztÞ

qAT

qx0
x0 þU tþ

xþ ‘h

c0

� �� �
dx0

A0
�

A

Ah

	 

; xo� ‘h; ðA:5Þ

and

PJH t�
x

c0

� �
¼
�r0U2

ð1�M2Þ

A0

Ah

1þ
A0

A

� �
TJ

2

�

Z 1
�1

qj	J
qx0
ðx0; 0; ztÞ

qAT

qx0
x0 þU t�

xþ ‘h

c0

� �� �
dx0

A0
�

A

Ah

	 

; �‘hoxo0. ðA:6Þ

The pressure components pEðx; tÞ; pJðx; tÞ on the right of (2.4) are then given by

pEðx; tÞ ¼TJ

X1
n¼0

ð�RJÞ
nPE tþ

x

c0
�

2nð‘h þ ‘EÞ

c0

� �
; xo� ‘h; ðA:7Þ

pJðx; tÞ ¼ PJT tþ
x

c0

� �
�TJ

X1
n¼0

ð�RJÞ
nPJH tþ

x

c0
�

2nð‘h þ ‘EÞ

c0
�

2‘E
c0

� �
; xo� ‘h. ðA:8Þ

These formulae are applicable provided the hood length ‘h is large enough for the potential flows represented by j	E
and j	J to be good approximations to the potential of an incompressible flow from the tunnel and out of the hood. This

condition obviously fails for a ‘flanged exit’ (when ‘h ¼ 0), and is probably invalid also for ‘h smaller than about Rh. In

these cases we take

pEðx; tÞ ¼ PE tþ
x

c0

� �
; pJðx; tÞ ¼ 0, (A.9)

where PE is defined as in (A.4) with the conditions (A.1) replaced by

j	EðxÞ � x� ‘E for jxjbR inside the tunnel;

� �A=4pjxj for jxjbRh in free space outside the hood;

)
(A.10)

the end correction ‘E must now be determined numerically along with j	EðxÞ.
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The drag-generated pressure pDðx; tÞ in (2.4) is given by

pDðx; tÞ ¼ pDHðx; tÞ þ pDTðx; tÞ, (A.11)

where

pDHðx; tÞ ¼
m2r0
2Ah

ðLRh
U2

HW þ LhU2
HTÞ

Uðtþ x=c0Þ � L�Mð‘D � ‘EA=AhÞ

1�MA=Ah

� �
þ

�	

�
Uðtþ x=c0Þ � L�Mð‘D � ‘EA=AhÞ

1�MA=Ah

� ‘h

� �
þ

�

þ
Uðtþ x=c0Þ � L�Mð‘D þ ‘EA=AhÞ

1þMA=Ah

� �
þ

�

�
Uðtþ x=c0Þ � L�Mð‘D þ ‘EA=AhÞ

1þMA=Ah

� ‘h

� �
þ

�

, ðA:12Þ

pDTðx; tÞ ¼
m2r0
2A
ðLRU2

TW þ LhU2
TTÞ

Uðtþ x=c0Þ � L

1�M
� ‘h

� �
þ

þ
Uðtþ x=c0Þ � L� 2M‘D

1þM
� ‘h

� �
þ

	 

, (A.13)

where m is a constant ‘friction factor’, the function ðxÞþ ¼ x; 0 according as x_0,

LRh
¼ 2pRh; LR ¼ 2pR; Lh ¼ 2ph, (A.14)

are respectively, the perimeters of the hood, tunnel and uniform section of the train, and

UTW ¼
A0U

ðA�A0Þ
1�

MA

ðA�A0Þ
þ

M2Að2A�A0Þ

2ðA�A0Þ
2

	 

,

UHW ¼
A0U

ðAh �A0Þ
1�

MAh

ðAh �A0Þ
þ

M2Ahð2Ah �A0Þ

2ðAh �A0Þ
2

	 

,

UTT ¼
AU

ðA�A0Þ
1�

MA0

ðA�A0Þ
þ

M2A0ð2A�A0Þ

2ðA�A0Þ
2

	 

,

UHT ¼
AhU

ðAh �A0Þ
1�

MA0

ðAh �A0Þ
þ

M2A0ð2Ah �A0Þ

2ðAh �A0Þ
2

	 

. ðA:15Þ

Experiment (Howe and Iida, 2003; Howe et al., 2006) indicates that excellent predictions of pD are obtained in model

scale applications with U as large as 425 km/h by taking m�0:053. But there is no Reynolds number similarity between

full scale and model scale, so that model scale predictions of pD will not necessarily constitute satisfactory predictions

for the drag-generated pressure at full scale.

The component pWðx; tÞ of the compression wave attributable to the N windows can be cast in the form

pWðx; tÞ ¼
XN

k¼1

pkðx; tÞ; xo� ‘h, (A.16)

where the pressure pkðx; tÞ generated by the kth window is given in terms of the mean exit flow velocity VkðtÞ (directed

out of the kth window) by

pkðx; tÞ ¼ �
r0c0Ak

2Ah

TJ

X1
n¼0

ð�RJÞ
n Vk tþ

fx� xk � 2nð‘h þ ‘EÞg

c0

� �	

� Vk tþ
fxþ xk � 2nð‘h þ ‘EÞ � 2‘Eg

c0

� �

. ðA:17Þ

The N velocities VkðtÞ are determined by the following system of equations (Cummings, 1984, 1986)

‘̄kðtÞr0
dVk

dt
þ
r0VkjVkj

2s2
¼ pIðxk; tÞ þ

PN
j¼1

pjðxk; tÞ

dLk

dt
¼ jVkðtÞj

‘̄kðtÞ ¼
pRk

4
þ ‘w þ

pRk

4

� ��
1þ

1

3

Lk

2Rk

� �1:585
" #

9>>>>>>>>>=
>>>>>>>>>;
; k ¼ 1; 2; . . . ;N. (A.18)
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New quantities on the right of these equations are defined as follows:

pIðxk; tÞ ¼ p̂Eðxk; tÞ þ p̂Iðxk; tÞ þ p̂Jðxk; tÞ, (A.19)

where

p̂Eðx; tÞ ¼
X1
n¼1

ð�RJÞ
nPE tþ

x

c0
�
2nð‘h þ ‘EÞ

c0

� �
þRJ

X1
n¼0

ð�RJÞ
nPE t�

x

c0
�

2nð‘h þ ‘EÞ

c0
�

2‘h

c0

� �
; (A.20)

p̂Iðxk; tÞ ¼ PE tþ
xk

c0

� �
1�

Z 1
�1

ATðx
0Þ

A0
CðUtþ xk � x0; ztÞdx0

	 


þ

pDHðxk; tÞ; to
ð�xk þ LÞ

U
;

pDH xk;
ð�xk þ LÞ

U

� �
; t4

ð�xk þ LÞ

U
;

8>>><
>>>:

ðA:21Þ

in which

Cðx; ztÞ ¼
1

pRh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2
p

X1
n¼0

Z 1
0

ŝnlInðljztj=RhÞ

In�1ðlÞ þ Inþ1ðlÞ
cos

lx

Rh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2
p

 !
dl (A.22)

and

ŝn ¼

1; n ¼ 0;

2; nX1 and zt40;

2ð�1Þn; nX1 and zto0;

8><
>: (A.23)

p̂Jðx; tÞ ¼
X1
n¼0

ð�RJÞ
n PJH t�

x

c0
�

2nð‘h þ ‘EÞ

c0

� �
� PJH tþ

x

c0
�
2nð‘h þ ‘EÞ

c0
�
2‘E
c0

� �	 

; (A.24)

and (for �‘hoxo0)

pjðx; tÞ ¼ �
r0c0Aj

2Ah

Vj t�
jx� xjj

c0

� �
�

r0c0Aj

2Ah

X1
n¼0

ð�RJÞ
n
�Vj tþ

fxþ xj � 2nð‘h þ ‘EÞ � 2‘Eg

c0

� �	

þ wnVj tþ
fx� xj � 2nð‘h þ ‘EÞg

c0

� �
þ wnVj tþ

f�xþ xj � 2nð‘h þ ‘EÞg

c0

� �

þ RJVj t�
fxþ xj þ 2nð‘h þ ‘EÞ þ 2‘hg

c0

� �

, ðA:25Þ

where

wn ¼
0; n ¼ 0;

1; nX1:

(
(A.26)

The constant s in (A.18) is the effective contraction ratio of the window jets, which to a good approximation can be

assumed to be constant and equal to 0.75 (Cummings, 1984, 1986); Lk is the axial length of the jet exhausting from

the kth window, and Rk ¼
ffiffiffiffiffiffiffiffiffiffiffi
Ak=p

p
is the equivalent radius of the kth window (Cummings, 1984, 1986; Howe, 2005).

The causal solution of these equations is required, subject to VkðtÞ ¼ 0;LkðtÞ ¼ 0 ðk ¼ 1; 2; . . . ;NÞ for t large and

negative; the jet length LkðtÞ must be reset to zero at every zero crossing of VkðtÞ (when the flow through the window

reverses direction).
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